Hidden Markov Models For Time Series
ad5a11057a70b7471f21ba97115dc856

Machine Learning

AI*IA 2007: Artificial Intelligence and Human-Oriented Computing

Time Series Analysis and Applications

Modelling Longitudinal and Spatially Correlated Data

Handbook of Hidden Markov Models in Bioinformatics

Machine Learning: ECML 2007

Introduction to Machine Learning with Applications in Information Security

Human-Computer Interaction

Hidden Markov Models for Time Series

Hidden Markov Models for Time Series

Hidden Markov Models for Time Series

Structural, Syntactic, and Statistical Pattern Recognition

Hands-On Markov Models with Python

Prediction of Financial Time Series

with Hidden Markov Models

Latent Markov Models for Longitudinal Data

Hidden Markov Models and Dynamical Systems

Hidden Markov and Other Models for Discrete-valued Time Series

Biological Sequence Analysis

Hidden Markov Models

Inference in Hidden Markov Models

The Application of Hidden Markov Models in Speech Recognition

Efficient Learning Machines

Hidden Semi-Markov Models

Time Series Quality Data Modeling Using Hidden Markov Models

An Introduction to Discrete-Valued Time Series

Hidden Markov Models Sequence Analysis and Related Approaches

Hidden Markov Models in Time Series, with Applications in Economics

Bayesian Reasoning and Machine Learning

Speech & Language Processing

Hidden Markov Models for Time Series

Bayesian Time Series Models

Symbolic Time Series Analysis Using Hidden Markov Models

Python Machine Learning Cookbook

Computational Science – ICCS 2020

Hidden Markov Models for Time Series

Markov Models

Hidden Markov Models with Time-continuous Output

Behavior

Multivariate Statistical Modelling Based on Generalized Linear Models

Machine Learning

AI*IA 2007: Artificial Intelligence and Human-Oriented Computing

The Application of Hidden Markov Models in Speech Recognition presents the core architecture of a HMM-based LVCSR system and proceeds to describe the various refinements which are needed to achieve state-of-the-art performance.

Time Series Analysis and Applications

This Festschrift volume is published in honor of Günter Haring on the occasion of his emerital celebration and contains invited papers by key researchers in the field of performance evaluation presented at the workshop Performance Evaluation of Computer and Communication Systems - Milestones and Future Challenges, PERFORM 2010, held in Vienna, Austria, in October 2010. Günter Haring has dedicated most of his scientific professional life to performance evaluation and the design of distributed systems, contributing in particular to
the field of workload characterization. In addition to his own contributions and leadership in international research projects, he is and has been an excellent mentor of young researchers demonstrated by their own brilliant scientific careers. The 20 thoroughly refereed papers range from visionary to in-depth research papers and are organized in the following topical sections: milestones and evolutions; trends: green ICT and virtual machines; modeling; mobility and mobile networks; communication and computer networks; and load balancing, analysis, and management.

Modelling Longitudinal and Spatially Correlated Data

This book constitutes the refereed proceedings of the 18th European Conference on Machine Learning, ECML 2007, held in Warsaw, Poland, September 2007, jointly with PKDD 2007. The 41 revised full papers and 37 revised short papers presented together with abstracts of four invited talks were carefully reviewed and selected from 592 abstracts submitted to both, ECML and PKDD. The papers present a wealth of new results in the area and address all current issues in machine learning.

Handbook of Hidden Markov Models in Bioinformatics

Unleash the power of unsupervised machine learning in Hidden Markov Models using TensorFlow, pgmpy, and hmmlearn Key Features Build a variety of Hidden Markov Models (HMM) Create and apply models to any sequence of data to analyze, predict, and extract valuable insights Use natural language processing (NLP) techniques and 2D-HMM model for image segmentation Book Description Hidden Markov Model (HMM) is a statistical model based on the Markov chain concept. Hands-On Markov Models with Python helps you get to grips with HMMs and different inference algorithms by working on real-world problems. The hands-on examples explored in the book help you simplify the process flow in machine learning by using Markov model concepts, thereby making it accessible to everyone. Once you’ve covered the basic concepts of Markov chains, you’ll get insights into Markov processes, models, and types with the help of practical examples. After grasping these fundamentals, you’ll move on to learning about the different algorithms used in inferences and applying them in state and parameter inference. In addition to this, you’ll explore the Bayesian approach of inference and learn how to apply it in HMMs. In further chapters, you’ll discover how to use HMMs in time series analysis and natural language processing (NLP) using Python. You’ll also learn to apply HMM to image processing using 2D-HMM to segment images. Finally, you’ll understand how to apply HMM for reinforcement learning (RL) with the help of Q-Learning, and use this technique for single-stock and multi-stock algorithmic trading. By the end of this book, you will have grasped how to build your own Markov and hidden Markov models on complex datasets in order to apply them to projects. What you will learn Explore a balance of both theoretical and practical aspects of HMM Implement HMMs using different datasets in Python using different packages Understand multiple inference algorithms and how to select the right algorithm to resolve your problems Develop a Bayesian approach to inference in HMMs Implement HMMs in finance, natural language processing (NLP), and image processing Determine the most likely sequence of
hidden states in an HMM using the Viterbi algorithm. Who this book is for Hands-On Markov Models with Python is for you if you are a data analyst, data scientist, or machine learning developer and want to enhance your machine learning knowledge and skills. This book will also help you build your own hidden Markov models by applying them to any sequence of data. Basic knowledge of machine learning and the Python programming language is expected to get the most out of the book.

Machine Learning: ECML 2007

"The thesis presents two Hidden Markov Model (HMM) based methodologies for the analysis and prediction of financial time series. Both methodologies are symbolic i.e., the time series is discretized into a sequence of symbols and future symbols are predicted based on the past symbols"--Abstract, leaf iii.

Introduction to Machine Learning with Applications in Information Security

Introduction to Machine Learning with Applications in Information Security provides a class-tested introduction to a wide variety of machine learning algorithms, reinforced through realistic applications. The book is accessible and doesn’t prove theorems, or otherwise dwell on mathematical theory. The goal is to present topics at an intuitive level, with just enough detail to clarify the underlying concepts. The book covers core machine learning topics in-depth, including Hidden Markov Models, Principal Component Analysis, Support Vector Machines, and Clustering. It also includes coverage of Nearest Neighbors, Neural Networks, Boosting and AdaBoost, Random Forests, Linear Discriminant Analysis, Vector Quantization, Naive Bayes, Regression Analysis, Conditional Random Fields, and Data Analysis. Most of the examples in the book are drawn from the field of information security, with many of the machine learning applications specifically focused on malware. The applications presented are designed to demystify machine learning techniques by providing straightforward scenarios. Many of the exercises in this book require some programming, and basic computing concepts are assumed in a few of the application sections. However, anyone with a modest amount of programming experience should have no trouble with this aspect of the book. Instructor resources, including PowerPoint slides, lecture videos, and other relevant material are provided on an accompanying website: http://www.cs.sjsu.edu/~stamp/ML/. For the reader’s benefit, the figures in the book are also available in electronic form, and in color. About the Author Mark Stamp has been a Professor of Computer Science at San Jose State University since 2002. Prior to that, he worked at the National Security Agency (NSA) for seven years, and a Silicon Valley startup company for two years. He received his Ph.D. from Texas Tech University in 1992. His love affair with machine learning began in the early 1990s, when he was working at the NSA, and continues today at SJSU, where he has supervised vast numbers of master’s student projects, most of which involve a combination of information security and machine learning.
Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses. After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations. The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations. Features Presents an accessible overview of HMMs Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology Includes numerous theoretical and programming exercises Provides most of the analysed data sets online New to the second edition A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process New case studies on animal movement, rainfall occurrence and capture recapture data

Hidden Markov Models for Time Series

Time Series Analysis (TSA) and Applications offers a dense content of current research and development in the field of data science. The book presents time series from a multidisciplinary approach that covers a wide range of sectors ranging from biostatistics to renewable energy forecasting. Contrary to previous literatures on time, serious readers will discover the potential of TSA in areas other than finance or weather forecasting. The choice of the algorithmic transform for different scenarios, which is a key determinant in the application of TSA, can be understood through the diverse domain applications. Readers looking for deep understanding and practicability of TSA will be delighted. Early career researchers too will appreciate the technicalities and refined mathematical complexities surrounding TSA. Our wish is that this book adds to the body of TSA knowledge and opens up avenues for those who are looking forward to applying TSA in their own context.

Hidden Markov Models for Time Series

Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques. Mariette Awad and Rahul Khanna’s synthetic approach weaves together the theoretical exposition, design principles, and practical applications of efficient machine learning. Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create new and more efficient machine learning systems. Readers of Efficient Learning Machines will learn
how to recognize and analyze the problems that machine learning technology
can solve for them, how to implement and deploy standard solutions to sample
problems, and how to design new systems and solutions. Advances in computing
performance, storage, memory, unstructured information retrieval, and cloud
computing have coevolved with a new generation of machine learning
paradigms and big data analytics, which the authors present in the conceptual
context of their traditional precursors. Awad and Khanna explore current
developments in the deep learning techniques of deep neural networks,
hierarchical temporal memory, and cortical algorithms. Nature suggests
sophisticated learning techniques that deploy simple rules to generate highly
intelligent and organized behaviors with adaptive, evolutionary, and distributed
properties. The authors examine the most popular biologically-inspired
algorithms, together with a sample application to distributed datacenter
management. They also discuss machine learning techniques for addressing
problems of multi-objective optimization in which solutions in real-world
systems are constrained and evaluated based on how well they perform with
respect to multiple objectives in aggregate. Two chapters on support vector
machines and their extensions focus on recent improvements to the
classification and regression techniques at the core of machine learning.

Hidden Markov Models

Annotation This book constitutes the refereed proceedings of the 10th Congress
of the Italian Association for Artificial Intelligence, AI*IA 2007, held in Rome,
Italy, in September 2007. The 42 revised full papers presented together with 14
revised poster papers and 3 invited talks were carefully reviewed and selected
from 80 submissions. The papers are organized in topical sections on knowledge
representation and reasoning, multiagent systems, distributed AI, knowledge
engineering, ontologies and the semantic Web, machine learning, natural
language processing, information retrieval and extraction, planning and
scheduling, AI and applications. Three special tracks depicting progresses in
significant application fields that represent increasingly relevant topics contain
18 additional papers on AI and robotics, AI and expressive media, and
intelligent access to multimedia information.

Structural, Syntactic, and Statistical Pattern Recognition

Hands-On Markov Models with Python

A first approach for modeling time series of counts: the thinning-based INAR
(1) model -- Further thinning-based models for count time series -- INGARCH
models for count time series -- Further models for count time series -- Analyzing
categorical time series -- Models for categorical time series -- Control charts for
count processes -- Control charts for categorical processes

Prediction of Financial Time Series with Hidden Markov Models

Markov Models This book will offer you an insight into the Hidden Markov
Models as well as the Bayesian Networks. Additionally, by reading this book,
you will also learn algorithms such as Markov Chain Sampling. Furthermore, this book will also teach you how Markov Models are very relevant when a decision problem is associated with a risk that continues over time, when the timing of occurrences is vital as well as when events occur more than once. This book highlights several applications of Markov Models. Lastly, after purchasing this book, you will need to put in a lot of effort and time for you to reap the maximum benefits. By Downloading This Book Now You Will Discover: Hidden Markov Models Dynamic Bayesian Networks Stepwise Mutations using the Wright Fisher Model Using Normalized Algorithms to Update the Formulas Types of Markov Processes Important Tools used with HMM Machine Learning And much much more! Download this book now and learn more about Markov Models!

Latent Markov Models for Longitudinal Data

Correlated data arise in numerous contexts across a wide spectrum of subject-matter disciplines. Modeling such data present special challenges and opportunities that have received increasing scrutiny by the statistical community in recent years. In October 1996 a group of 210 statisticians and other scientists assembled on the small island of Nantucket, U. S. A., to present and discuss new developments relating to Modelling Longitudinal and Spatially Correlated Data: Methods, Applications, and Future Directions. Its purpose was to provide a cross-disciplinary forum to explore the commonalities and meaningful differences in the source and treatment of such data. This volume is a compilation of some of the important invited and volunteered presentations made during that conference. The three days and evenings of oral and displayed presentations were arranged into six broad thematic areas. The session themes, the invited speakers and the topics they addressed were as follows: • Generalized Linear Models: Peter McCullagh - "Residual Likelihood in Linear and Generalized Linear Models" • Longitudinal Data Analysis: Nan Laird - "Using the General Linear Mixed Model to Analyze Unbalanced Repeated Measures and Longitudinal Data" • Spatio-Temporal Processes: David R. Brillinger - "Statistical Analysis of the Tracks of Moving Particles" • Spatial Data Analysis: Noel A. Cressie - "Statistical Models for Lattice Data" • Modelling Messy Data: Raymond J. Carroll - "Some Results on Generalized Linear Mixed Models with Measurement Error in Covariates" • Future Directions: Peter J.

Hidden Markov Models and Dynamical Systems

Hidden semi-Markov models (HSMMs) are among the most important models in the area of artificial intelligence / machine learning. Since the first HSMM was introduced in 1980 for machine recognition of speech, three other HSMMs have been proposed, with various definitions of duration and observation distributions. Those models have different expressions, algorithms, computational complexities, and applicable areas, without explicitly interchangeable forms. Hidden Semi-Markov Models: Theory, Algorithms and Applications provides a unified and foundational approach to HSMMs, including various HSMMs (such as the explicit duration, variable transition, and residential time of HSMMs), inference and estimation algorithms, implementation methods and application instances. Learn new developments
and state-of-the-art emerging topics as they relate to HSMMs, presented with examples drawn from medicine, engineering and computer science. Discusses the latest developments and emerging topics in the field of HSMMs. Includes a description of applications in various areas including, Human Activity Recognition, Handwriting Recognition, Network Traffic Characterization and Anomaly Detection, and Functional MRI Brain Mapping. Shows how to master the basic techniques needed for using HSMMs and how to apply them.

Hidden Markov and Other Models for Discrete-valued Time Series

Drawing on the authors' extensive research in the analysis of categorical longitudinal data, Latent Markov Models for Longitudinal Data focuses on the formulation of latent Markov models and the practical use of these models. Numerous examples illustrate how latent Markov models are used in economics, education, sociology, and other fields. The R and MATLAB® routines used for the examples are available on the authors' website. The book provides you with the essential background on latent variable models, particularly the latent class model. It discusses how the Markov chain model and the latent class model represent a useful paradigm for latent Markov models. The authors illustrate the assumptions of the basic version of the latent Markov model and introduce maximum likelihood estimation through the Expectation-Maximization algorithm. They also cover constrained versions of the basic latent Markov model, describe the inclusion of the individual covariates, and address the random effects and multilevel extensions of the model. After covering advanced topics, the book concludes with a discussion on Bayesian inference as an alternative to maximum likelihood inference. As longitudinal data become increasingly relevant in many fields, researchers must rely on specific statistical and econometric models tailored to their application. A complete overview of latent Markov models, this book demonstrates how to use the models in three types of analysis: transition analysis with measurement errors, analyses that consider unobserved heterogeneity, and finding clusters of units and studying the transition between the clusters.

Biological Sequence Analysis

Demonstrating that many useful resources, such as databases, can benefit most bioinformatics projects, the Handbook of Hidden Markov Models in Bioinformatics focuses on how to choose and use various methods and programs available for hidden Markov models (HMMs). The book begins with discussions on key HMM and related profile methods, including the HMMER package, the sequence analysis method (SAM), and the PSI-BLAST algorithm. It then provides detailed information about various types of publicly available HMM databases, such as Pfam, PANTHER, COG, and metaSHARK. After outlining ways to develop and use an automated bioinformatics workflow, the author describes how to make custom HMM databases using HMMER, SAM, and PSI-BLAST. He also helps you select the right program to speed up searches. The final chapter explores several applications of HMM methods, including predictions of subcellular localization, posttranslational modification, and binding site. By learning how to effectively use the databases and methods
presented in this handbook, you will be able to efficiently identify features of biological interest in your data.

Hidden Markov Models

This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states. In a unified way the book covers both models with finite state spaces and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Many examples illustrate the algorithms and theory. This book builds on recent developments to present a self-contained view.

Inference in Hidden Markov Models

The first unified treatment of time series modelling techniques spanning machine learning, statistics, engineering and computer science.

The Application of Hidden Markov Models in Speech Recognition

The seven-volume set LNCS 12137, 12138, 12139, 12140, 12141, 12142, and 12143 constitutes the proceedings of the 20th International Conference on Computational Science, ICCS 2020, held in Amsterdam, The Netherlands, in June 2020.* The total of 101 papers and 248 workshop papers presented in this book set were carefully reviewed and selected from 719 submissions (230 submissions to the main track and 489 submissions to the workshops). The papers were organized in topical sections named: Part I: ICCS Main Track Part II: ICCS Main Track Part III: Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Agent-Based Simulations, Adaptive Algorithms and Solvers; Applications of Computational Methods in Artificial Intelligence and Machine Learning; Biomedical and Bioinformatics Challenges for Computer Science Part IV: Classifier Learning from Difficult Data; Complex Social Systems through the Lens of Computational Science; Computational Health; Computational Methods for Emerging Problems in (Dis-)Information Analysis Part V: Computational Optimization, Modelling and Simulation; Computational Science in IoT and Smart Systems; Computer Graphics, Image Processing and Artificial Intelligence Part VI: Data Driven Computational Sciences; Machine Learning and Data Assimilation for Dynamical Systems; Meshfree Methods in Computational Sciences; Multiscale Modelling and Simulation; Quantum Computing Workshop Part VII: Simulations of Flow and Transport: Modeling, Algorithms and Computation; Smart Systems: Bringing Together Computer Vision, Sensor Networks and Machine Learning; Software Engineering for Computational Science; Solving Problems with Uncertainties; Teaching Computational Science; UNcErtainty QUantIfication for ComputationAl modeLs *The conference was canceled due to the COVID-19 pandemic.
Efficient Learning Machines

This book constitutes the refereed proceedings of the 12th International Workshop on Structural and Syntactic Pattern Recognition, SSPR 2008 and the 7th International Workshop on Statistical Techniques in Pattern Recognition, SPR 2008, held jointly in Orlando, FL, USA, in December 2008 as a satellite event of the 19th International Conference of Pattern Recognition, ICPR 2008. The 56 revised full papers and 42 revised poster papers presented together with the abstracts of 4 invited papers were carefully reviewed and selected from 175 submissions. The papers are organized in topical sections on graph-based methods, probabilistic and stochastic structural models for PR, image and video analysis, shape analysis, kernel methods, recognition and classification, applications, ensemble methods, feature selection, density estimation and clustering, computer vision and biometrics, pattern recognition and applications, pattern recognition, as well as feature selection and clustering.

Hidden Semi-Markov Models

The book is aimed at applied statisticians, graduate students of statistics, and students and researchers with a strong interest in statistics and data analysis. This second edition is extensively revised, especially those sections relating with Bayesian concepts.

Time Series Quality Data Modeling Using Hidden Markov Models

Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.

An Introduction to Discrete-Valued Time Series

This open access book provides innovative methods and original applications of sequence analysis (SA) and related methods for analysing longitudinal data describing life trajectories such as professional careers, family paths, the succession of health statuses, or the time use. The applications as well as the methodological contributions proposed in this book pay special attention to the combined use of SA and other methods for longitudinal data such as event history analysis, Markov modelling, and sequence network. The methodological contributions in this book include among others original propositions for
measuring the precarity of work trajectories, Markov-based methods for clustering sequences, fuzzy and monothetic clustering of sequences, network-based SA, joint use of SA and hidden Markov models, and of SA and survival models. The applications cover the comparison of gendered occupational trajectories in Germany, the study of the changes in women market participation in Denmark, the study of typical day of dual-earner couples in Italy, of mobility patterns in Togo, of internet addiction in Switzerland, and of the quality of employment career after a first unemployment spell. As such this book provides a wealth of information for social scientists interested in quantitative life course analysis, and all those working in sociology, demography, economics, health, psychology, social policy, and statistics.

Provides new perspectives and methods for sequence analysis Focuses on the link between sequence analysis and other methods for longitudinal data, especially event history analysis and Markov models Stresses the complementarity of sequence analysis and other models for longitudinal data Applications of sequence analysis in a whole range of different domains This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.

Hidden Markov Models

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

Sequence Analysis and Related Approaches

Performance Evaluation of Computer and Communication Systems. Milestones and Future Challenges
Hidden Markov Models in Time Series, with Applications in Economics

Reveals How HMMs Can Be Used as General-Purpose Time Series Models
Implements all methods in R Hidden Markov Models for Time Series: An Introduction Using R applies hidden Markov models (HMMs) to a wide range of time series types, from continuous-valued, circular, and multivariate series to binary data, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out computations for parameter estimation, model selection and checking, decoding, and forecasting. Illustrates the methodology in action After presenting the simple Poisson HMM, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference. Through examples and applications, the authors describe how to extend and generalize the basic model so it can be applied in a rich variety of situations. They also provide R code for some of the examples, enabling the use of the codes in similar applications. Effectively interpret data using HMMs This book illustrates the wonderful flexibility of HMMs as general-purpose models for time series data. It provides a broad understanding of the models and their uses.

Bayesian Reasoning and Machine Learning

100 recipes that teach you how to perform various machine learning tasks in the real world About This Book Understand which algorithms to use in a given context with the help of this exciting recipe-based guide Learn about perceptrons and see how they are used to build neural networks Stuck while making sense of images, text, speech, and real estate? This guide will come to your rescue, showing you how to perform machine learning for each one of these using various techniques Who This Book Is For This book is for Python programmers who are looking to use machine-learning algorithms to create real-world applications. This book is friendly to Python beginners, but familiarity with Python programming would certainly be useful to play around with the code. What You Will Learn Explore classification algorithms and apply them to the income bracket estimation problem Use predictive modeling and apply it to real-world problems Understand how to perform market segmentation using unsupervised learning Explore data visualization techniques to interact with your data in diverse ways Find out how to build a recommendation engine Understand how to interact with text data and build models to analyze it Work with speech data and recognize spoken words using Hidden Markov Models Analyze stock market data using Conditional Random Fields Work with image data and build systems for image recognition and biometric face recognition Grasp how to use deep neural networks to build an optical character recognition system In Detail Machine learning is becoming increasingly pervasive in the modern data-driven world. It is used extensively across many fields such as search engines, robotics, self-driving cars, and more. With this book, you will learn how to perform various machine learning tasks in different environments. We'll start by exploring a range of real-life scenarios where machine learning
can be used, and look at various building blocks. Throughout the book, you'll use a wide variety of machine learning algorithms to solve real-world problems and use Python to implement these algorithms. You'll discover how to deal with various types of data and explore the differences between machine learning paradigms such as supervised and unsupervised learning. We also cover a range of regression techniques, classification algorithms, predictive modeling, data visualization techniques, recommendation engines, and more with the help of real-world examples. Style and approach You will explore various real-life scenarios in this book where machine learning can be used, and learn about different building blocks of machine learning using independent recipes in the book.

Speech & Language Processing

This book presents, in an integrated form, both the analysis and synthesis of three different types of hidden Markov models. Unlike other books on the subject, it is generic and does not focus on a specific theme, e.g. speech processing. Moreover, it presents the translation of hidden Markov models’ concepts from the domain of formal mathematics into computer codes using MATLAB®. The unique feature of this book is that the theoretical concepts are first presented using an intuition-based approach followed by the description of the fundamental algorithms behind hidden Markov models using MATLAB®. This approach, by means of analysis followed by synthesis, is suitable for those who want to study the subject using a more empirical approach. Key Selling Points: Presents a broad range of concepts related to Hidden Markov Models (HMM), from simple problems to advanced theory Covers the analysis of both continuous and discrete Markov chains Discusses the translation of HMM concepts from the realm of formal mathematics into computer code Offers many examples to supplement mathematical notation when explaining new concepts

Hidden Markov Models for Time Series

Bayesian Time Series Models

Symbolic Time Series Analysis Using Hidden Markov Models

Reveals How HMMs Can Be Used as General-Purpose Time Series Models Implements all methods in R Hidden Markov Models for Time Series: An Introduction Using R applies hidden Markov models (HMMs) to a wide range of time series types, from continuous-valued, circular, and multivariate series to binary data, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out computations for parameter estimation, model selection and checking, decoding, and forecasting. Illustrates the methodology in action After presenting the simple Poisson HMM, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference. Through examples and applications, the authors describe how to extend and generalize the basic model so it can be applied in a rich variety of situations. They also
provide R code for some of the examples, enabling the use of the codes in similar applications. Effectively interpret data using HMMs This book illustrates the wonderful flexibility of HMMs as general-purpose models for time series data. It provides a broad understanding of the models and their uses.

Python Machine Learning Cookbook

Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses. After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations. The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations. Features Presents an accessible overview of HMMs Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology Includes numerous theoretical and programming exercises Provides most of the analysed data sets online New to the second edition A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process New case studies on animal movement, rainfall occurrence and capture-recapture data

Computational Science – ICCS 2020

A practical introduction perfect for final-year undergraduate and graduate students without a solid background in linear algebra and calculus.

Hidden Markov Models for Time Series

This book constitutes the refereed proceedings of the International Workshop on Human Computer Interaction, HCI 2007. Coverage in the 16 revised full papers presented includes affective detection and recognition, human motion tracking, multimedia data modeling and visualization, HCI issues in image/video retrieval, learning in HCI, input and interaction techniques, perceptual user interfaces, wearable and pervasive technologies in HCI and intelligent virtual environments.

Markov Models

Discrete-valued time series are common in practice, but methods for their analysis are not well-known. In recent years, methods have been developed which are specifically designed for the analysis of discrete-valued time series. Hidden Markov and Other Models for Discrete-Valued Time Series introduces a new, versatile, and computationally tractable class of models, the "hidden Markov" models. It presents a detailed account of these models, then applies
them to data from a wide range of diverse subject areas, including medicine, climatology, and geophysics. This book will be invaluable to researchers and postgraduate and senior undergraduate students in statistics. Researchers and applied statisticians who analyze time series data in medicine, animal behavior, hydrology, and sociology will also find this information useful.

Hidden Markov Models with Time-continuous Output Behavior

Hidden Markov models (HMMs) originally emerged in the domain of speech recognition. In recent years, they have attracted growing interest in the area of computer vision as well. This book is a collection of articles on new developments in the theory of HMMs and their application in computer vision. It addresses topics such as handwriting recognition, shape recognition, face and gesture recognition, tracking, and image database retrieval. This book is also published as a special issue of the International Journal of Pattern Recognition and Artificial Intelligence (February 2001). Contents: Introduction: A Simple Complex in Artificial Intelligence and Machine Learning (B H Juang)An Introduction to Hidden Markov Models and Bayesian Networks (Z Chahramani)Multi-Lingual Machine Printed OCR (P Natarajan et al.)Using a Statistical Language Model to Improve the Performance of an HMM-Based Cursive Handwriting Recognition System (U-V Marti & H Bunke)An 2-D HMM Method for Offline Handwritten Character Recognition (H-S Park et al.)Data-Driven Design of HMM Topology for Online Handwriting Recognition (A D Wilson & A F Bobick)Sentence Lipreading Using Hidden Markov Model with Integrated Grammar (K Yu et al.)Tracking and Surveillance in Wide-Area Spatial Environments Using the Abstract Hidden Markov Model (H H Bui et al.)Shape Tracking and Production Using Hidden Markov Models (T Caelli et al.)An Integrated Approach to Shape and Color-Based Image Retrieval of Rotated Objects Using Hidden Markov Models (S Müller et al.) Readership: Graduate students of computer science, electrical engineering and related fields, as well as researchers at academic and industrial institutions. Keywords: Hidden Markov Models; Gesture Recognition; Bayesian Networks; Optical Character Recognition; Handwriting Character Recognition; Cartography; Shape Extraction; Image Feature Extraction.

Multivariate Statistical Modelling Based on Generalized Linear Models

As more applications are found, interest in Hidden Markov Models continues to grow. Following comments and feedback from colleagues, students and other working with Hidden Markov Models the corrected 3rd printing of this volume contains clarifications, improvements and some new material, including results on smoothing for linear Gaussian dynamics. In Chapter 2 the derivation of the basic filters related to the Markov chain are each presented explicitly, rather than as special cases of one general filter. Furthermore, equations for smoothed estimates are given. The dynamics for the Kalman filter are derived as special cases of the authors’ general results and new expressions for a Kalman smoother are given. The Chapters on the control of Hidden Markov Chains are expanded and clarified. The revised Chapter 4 includes state estimation for
discrete time Markov processes and Chapter 12 has a new section on robust control.